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Outline

• Model reduction overview
– Projection framework

– Proper orthogonal decomposition (POD)

• Towards robust design and optimization     
(T. Bui-Thanh)

– Including variability in reduced-order models

– Example: design of bladed disks

• An optimization approach to model 
reduction (B. van Bloemen Waanders, B. Bader, 
O. Ghattas)
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Model Order Reduction

Full-order space Reduced-order space

Reduction level is several orders of magnitude
e.g. 2-D Euler : from ~104 states to ~101.

Systematic model order reduction to replicate high-
fidelity results over a restricted range of inputs.
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Why Model Reduction?

When is the high-fidelity dynamical system 
model too expensive?
• Multidisciplinary applications

– Aeroelasticity (fluid/structure)
– Flow control

• Real-time applications
• Design and optimization
• Probabilistic computations

Key idea: trade upfront computational work 
(offline phase) for a fast model (online phase).
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Dynamical Systems
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CFD Dynamical Systems
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Reduced-Order Projection
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Reduced-Order Dynamical Systems
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• Determine the projection x= Vxr
where V contains m basis vectors

so that m¿ n and system dynamics are 
captured accurately:  yr ≈ y

• Most, but not all, reduction techniques use 
projection framework

Reduced-Order Basis
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Proper Orthogonal Decomposition
• Consider M snapshots

(instantaneous state solutions)

• Construct kernel
1

M
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j j
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• V = [v1, v2, v3, ...] are eigenvectors of K with λ1 ≥ λ2 ≥ λ3 …

• If VP contains the first P eigenvectors, then QP = VPVP
T

is the optimal projection in a least squares sense:
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• Note: optimality and error bound applies to the 
reconstruction of sampled data, not to the ROM.
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Method of Snapshots
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Sirovich: the eigenvectors of the kernel are linear 
combinations of the snapshots:
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Time-Domain POD Algorithm
Reduction procedure:

1. Simulate the high-order CFD system to get M snapshots 

xj, j=1,2,…,M

2. Construct the correlation matrix  Rij = xiT xj
3. Calculate the eigenvectors αi and eigenvalues λi of R

4. Construct the basis functions

5. Select the most energetic basis functions using λi
6. Project the governing equations onto the reduced basis
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Most expensive step is the CFD simulation.
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Frequency Domain
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For linear systems, response can be 
decomposed into temporal harmonics:
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Frequency Domain POD
• Difficulty in choosing appropriate time simulation 

to obtain snapshots
• Instead, pick a set of sample frequencies ωk

• Solve frequency domain equations at each 
frequency to obtain complex snapshots
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A Different View of POD

• POD often thought of in least squares 
context
– POD basis vector provides least squares fit to 

snapshot data

• Balanced truncation provides different 
insight
– Concepts of controllability and observability

Inputs State Outputs

“Controllable” modes
– easy to reach, require small 

control energy

“Observable” modes
– generate large output energy
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Subspaces
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The controllable subspace is that set of states that can be 
obtained with zero initial state and a given input (reachable states).

The observable subspace is that set of states which as initial 
conditions produce a non-zero output with no external input.
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Gramians
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POD Versus Balanced Truncation
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POD Kernel:

Controllability Gramian:

• POD is an approximation to the controllability Gramian
with rectangular rule.

• POD basis vectors approximate the most controllable 
modes (over sampled frequencies).

• Can also include POD analysis of dual for observability.
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Outline

• Model reduction overview
– Projection framework

– Proper orthogonal decomposition (POD)

• Towards robust design and optimization     
(T. Bui-Thanh)

– Including variability in reduced-order models

– Example: design of bladed disks

• An optimization approach to model 
reduction
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Turbomachinery Applications

• Problems have spatial symmetry
• Decompose general solution into 

spatial harmonics – interblade
phase angles

• Solve linearized system
efficiently in frequency 
domain on a single 
passage
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Effects of Variability

P+(t)
ζ(t)
s(t)

P-(t)

h(t), α(t)
Variability in
• blade structural parameters
• blade shape

• Can have very large (negative) impact on forced 
response and a positive impact on stability

• Intentional mistuning can improve robustness
• Probabilistic design methods are a critical need
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Representing Geometry Variability

• Mistuned blade geometry, g, can be expressed as 
(Garzon and Darmofal, 2003) 

• g0 : nominal blade 
• wi : POD geometry modes
• zi ∈ N(0,1)
• σi: standard deviation of the geometric data 

attributable to the ith mode
• ns : number of mode shapes used to represent the 

mistuning.
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Variability in CFD Models

• CFD model dependence on geometry can now be 
written

where

• For probabilistic calculations, too expensive to 
evaluate A, B, C for many geometries
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Approximate Model for Variability

• Efficient approximation using interpolation at 
nominal conditions, g, and at selected interpolation 
points, zij

• Interpretation: 
– Lagrange interpolation in each random variable zi
– Taylor series expansion

• Similar expressions for B, C
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• Approximate linearized system for arbitrary mistuning:

where

• Requires               expensive linearization system 
evaluations (offline cost)

• Online cost to compute system for any mistuning z is small.

Approximate Model for Variability
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• Given a reduced basis for the flow state, V, W:

where

• Basis must capture both unsteady dynamics (i.e. t) and 
parameter variations (i.e. z)

• Use sampling methods proposed by Patera et al.

Probabilistic Reduced-Order Model
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Example: Blade Shape Variability

• Actual manufacturing data from Pratt & Whitney
– 145 blades measured at 9 sections

• Preliminary analysis:
– Blade in isolation
– Two-dimensional analysis at mid-section
– Rigid unsteady plunging motion
– M=0.3

• Geometry model with 2 POD shape modes captures 
82.55% of variability
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Geometry Mode 1
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Tuned System ROM Results
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Outline

• Model reduction overview
– Projection framework

– Proper orthogonal decomposition (POD)

• Towards robust design and optimization
– Including variability in reduced-order models

– Example: design of bladed disks

• An optimization approach to model 
reduction (B. van Bloemen Waanders, B. Bader,         
O. Ghattas)
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Reduction via POD

• POD is a data-driven approach. Basis and ROM do 
not respect the governing equations. 

• Reduction via POD offers no guarantees of ROM 
quality (accuracy/stability).

• Proposed method: pose model reduction problem as 
an optimization problem.
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Reduction via Optimization
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Optimization Framework:
Goal-Oriented

Error in reduced-order 
outputs for sample set
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Optimization Framework

Regularization term to 
yield basis vectors of 
unit length
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Optimization Framework: 
Model-Based

Reduced output 
predictions from solution 
of governing equations
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Basis Computation

• Time integrals in objective function are replaced by a 
summation over a finite number of discrete time 
instants
– Method requires a priori computation of a snapshot set over 
S parameter instances and T timesteps

• Assume the basis vectors are linear combinations of 
snapshots

– Reduces number of unknowns from mn to mST
– Typically ST¿ n

• Use POD basis as initial guess for optimizer
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Optimization Framework vs. POD

OPT: min error 
in computed
data

POD: min error 
in projected
data
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2D Heat Conduction Example
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Summary
• Model reduction methodology provides an efficient 

representation both for unsteady dynamics and for 
variability

• Formulation leads to parametric reduced-order 
models
– Challenge: sampling methods to create a basis that spans high-

dimensional input space

• Model reduction problem can be solved using 
optimization
– An opportunity for robust optimization?

• Remaining challenge: incorporation of reduced-order 
models into probabilistic design and optimization


